
COP 4710: Database Systems (Query Processing) Page 1 Mark Llewellyn ©

COP 4710: Database Systems
Spring 2008

Chapter 12 – Query Processing

COP 4710: Database Systems
Spring 2008

Chapter 12 – Query Processing

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2008

COP 4710: Database Systems (Query Processing) Page 2 Mark Llewellyn ©

Query Processing and Optimization

• A query expressed in a high-level language like SQL must
first be scanned, parsed, and validated.

• Once the above steps are completed, an internal
representation of the query is created. Typically this is either
a tree or graph structure, called a query tree or query graph.

• Using the query tree or query graph the RDBMS must devise
an execution strategy for retrieving the results from the
internal files.

• For all but the most simple queries, several different
execution strategies are possible. The process of choosing a
suitable execution strategy is called query optimization.

COP 4710: Database Systems (Query Processing) Page 3 Mark Llewellyn ©

The Steps in Query Processing

Scanning, Parsing, and Validation

query in a high-level language

intermediate form of the query

Query Optimizer

execution plan

Query Code Generator

code to execute query

Run-time Database Processor query results

COP 4710: Database Systems (Query Processing) Page 4 Mark Llewellyn ©

Query Optimization
• The term query optimization may be somewhat misleading.

Typically, no attempt is made to achieve an optimal query
execution strategy overall – merely a reasonably efficient
strategy.

• Finding an optimal strategy is usually too time consuming
except for very simple queries and for these it usually doesn’t
matter.

• Queries may be “hand-tuned” for optimal performance, but
this is rare.

• Each RDBMS will typically maintain a number of general
database access algorithms that implement basic relational
operations such as select and join. Hybrid combinations of
relational operations also typically exist.

COP 4710: Database Systems (Query Processing) Page 5 Mark Llewellyn ©

Query Optimization (cont.)

• Only execution strategies that can be implemented by the
DBMS access algorithms and which apply to the particular
database in question can be considered by the query
optimizer.

• There are two basic techniques that can be applied to query
optimization:

1. Heuristic rules: these are rules that will typically reorder the
operations in the query tree for a particular execution strategy.

2. Systematical estimation: the cost of various execution strategies are
systematically estimated and the plan with the least “cost” is chosen.
What constitutes cost can also vary. It could be a monetary cost, or it
could be a cost in terms of time or other factors.

• Most query optimizers use a combination of both techniques.

COP 4710: Database Systems (Query Processing) Page 6 Mark Llewellyn ©

Query Trees

• A query tree is a tree representation of a relational algebra
expression which represents the operand relations as leaf
nodes and the relational algebra operators as internal nodes.

• Execution of the query tree consists of executing and internal
node operation whenever its operands are available and then
replacing that internal node by the virtual relation which
results from the execution of the operation.

• Execution terminates when the root node is executed and the
resulting relation is produced.

• This technique is similar to what many compilers do for
3GLs like C.

COP 4710: Database Systems (Query Processing) Page 7 Mark Llewellyn ©

Query Tree Example
• Consider the query: “list the supplier numbers for suppliers who supply a

red part.” (this one should be really familiar by now!!)

• In relational algebra we have:

• The corresponding query tree is:

()()()()Pspj 'red'color#p#s =∗ σππ

πs#

*

πp#

σcolor = red

P

SPJ

COP 4710: Database Systems (Query Processing) Page 8 Mark Llewellyn ©

Query Trees
• There are usually several different ways to generate a

relational algebra expression for a query. This should be
quite obvious by now after doing the homework for the
course.

• Since several different relational algebra expressions are
possible for a given query, so too are there multiple query
trees possible for the same query.

• The next page shows several different relational algebra
expressions for a given query and the following couple of
pages illustrate the possible query trees.

COP 4710: Database Systems (Query Processing) Page 9 Mark Llewellyn ©

Query Expressions
• Query: list the names of those suppliers who ship both part

numbers P1 and P2.

SQL Version #1:

Select name
From Suppliers
Where s# In (Select s#

From Shipments
Where p# = “P1”)

And s# In (Select s#
From Shipments
Where p# = “P2”)

SQL Version #2:

Select name
From Suppliers
Where Exists (Select s#

From Shipments
Where p# = “P1” and

Suppliers.s# = Shipments.s#)
And Exists (Select s#

From Shipments
Where p# = “P2” and

Suppliers.s# = Shipments.s#)

COP 4710: Database Systems (Query Processing) Page 10 Mark Llewellyn ©

Query Expressions
• Query: list the names of those suppliers who ship both part

numbers P1 and P2.

SQL Version #3:

Select name
From Suppliers
Where s# In (Select Shipments.s#

From Shipments Cross Join Shipments As SPJ
Where Shipments.s# = SPJ.s#

And Shipments.p# = “P1”
And SPJ.p# = “P2”)

COP 4710: Database Systems (Query Processing) Page 11 Mark Llewellyn ©

Query Expressions

• Query: list the names of those suppliers who ship both part
numbers P1 and P2.

exp #1:

exp #2:

exp #3:

exp #4:

()()()()() ()()()()()spjsspjs 2P#p#sname1P#p#sname == ∗∩∗ σππσππ

()()() ()()()()()spjspjs 2P#p#s1P#p#sname == ∩∗ σπσππ

() ()()()()()()1spjspj1spjspjs 2P#p.1spj1P#p.spj#sname ×∗ == σσππ

()()()()()()1spjspjs #p.1spj,#p.spj,#s.1spl,#s.spj#s.1spj#s.spj2P#p.1spj1P#p.spjname ×∗ === πσσσπ

Similar to SQL
Versions #1 and
#2

Similar to SQL
Version #3

COP 4710: Database Systems (Query Processing) Page 12 Mark Llewellyn ©

Corresponding Query Trees
∩

*

πname

σp# = P1

SPJ

πname

S πs#

*

S πs#

σp# = P2

SPJ

Query tree for
exp #1

σp# = P2

∩

*

πname

σp# = P1

SPJ

S

πs#
πs#

SPJ

Query tree for
exp #2

COP 4710: Database Systems (Query Processing) Page 13 Mark Llewellyn ©

Corresponding Query Trees

*

πname

σp# = P1

SPJ

S

×

σp# = P2

SPJ1

Query tree for
exp #3

σspj.s# = spj1.s#

*

πname

σspj.# = P1

SPJ

S

×

σspj1.p# = P2

SPJ1

Query tree for
exp #4

σspj.s# = spj1.s#

πspj.s#, spj1.

spj.p#, spj1.p#

COP 4710: Database Systems (Query Processing) Page 14 Mark Llewellyn ©

Corresponding Query Trees

σp# = P2

∩

*

πname

σp# = P1

SPJ

S

πs#
πs#

SPJ

Original query
tree for exp #2

∩

*

πname

σp# = P1

SPJ

S πs#
πs#

SPJ

Modified query
tree for exp #2 –
the table into the
join is smaller.

σp# = P2

πs#, name

COP 4710: Database Systems (Query Processing) Page 15 Mark Llewellyn ©

Basic Query Execution Algorithms
• For each operation (relational algebra operation, plus others)

as well as combinations of operations, the DBMS will
maintain one or more algorithms to execute the operation.

• Certain algorithms will apply to particular storage structures
and access paths and thus can only be utilized if the
underlying files involved in the operation include these
access paths.

• Typically, the access paths will involve indices and/or hash
tables, although other hybrid access paths are also possible.

• In the next few pages will examine some of these query
execution strategies for the basic relational algebra
operations.

COP 4710: Database Systems (Query Processing) Page 16 Mark Llewellyn ©

Algorithms for Selection Operations
• There are many different options for Select operations based on the

availability of access paths, indices, etc.

• Search algorithms for Select operations are one of two types:

– index scans: search is directed from an index structure.

– file scans: records are selected directly from the file structure.

• (FS1-linear search): Heap files typically are searched with a linear search
algorithm.

• (FS2-binary search): Sequential files are typically searched with a binary
or jump type of search algorithm.

• (IS3-primary index or hash key to extract single record): In these cases
the selection condition involves an equality comparison on a key attribute
for which a primary index has been created (or a hash key can be used.)

COP 4710: Database Systems (Query Processing) Page 17 Mark Llewellyn ©

Algorithms for Selection Operations (cont.)

• (IS4-primary index or hash key to extract multiple records): In these
cases the selection condition involves a non-equality based comparison
(<, <=, >, >=) on a key attribute for which a primary index has been
created. The primary index is used to find the record which satisfies the
equality condition and then based upon this record, all other preceding (<
or <=) or subsequent (> or >=) records are retrieved from the ordered file.

• (IS5-clustering index to extract multiple records): In these cases the
selection condition involves an equality comparison on a non-key
attribute which has a clustering index (a secondary index). The clustering
index is used to retrieve all records which satisfy the selection condition.

• (IS6 – secondary index, B+ tree): A selection condition with an equality
comparison, a secondary index can be used to retrieve a single record if
the indexing field is a key or to retrieve multiple records if the indexing
field is not a key. Secondary indices can also be used for any of the
comparison operators, not just equality.

COP 4710: Database Systems (Query Processing) Page 18 Mark Llewellyn ©

Algorithms for Conjunctive Selections

• Conjunctive selections are selection conditions in which
several conditions are logically AND’ed together.

• For simple (non-conjunctive) selection conditions,
optimization basically means that you check for the
existence of an access path on the attribute involved in the
condition and use it if available, otherwise a linear search is
performed.

• Query optimization for selection is most useful for
conjunctive conditions whenever more than one of the
participating attributes has an access path.

• The optimizer should choose the access path that retrieves
the fewest records in the most efficient manner.

COP 4710: Database Systems (Query Processing) Page 19 Mark Llewellyn ©

Algorithms for Conjunctive Selections (cont.)

• The overriding concern when choosing between multiple
simple conditions in a conjunctive select condition is the
selectivity of each condition.

• Selectivity is defined as:

• The smaller the selectivity the fewer the tuples the condition
selects.

• Thus the optimizer should schedule the conjunctive selection
comparisons so that the smallest selectivity conditions are
applied first followed by the higher and higher selectivity
values so that the last condition applied has the highest
selectivity value.

relationtheinrecordsof#
conditionthesatisfywhichrecordsof#ySelectivit =

COP 4710: Database Systems (Query Processing) Page 20 Mark Llewellyn ©

Algorithms for Conjunctive Selections (cont.)

• Usually, exact selectivity values for all conditions are not available.
However, the DBMS will maintain estimates for most if not all types of
conditions and these estimates will be used by the optimizer.

• For example:

– The selectivity of an equality condition on a key attribute of a relation r(R) is:

– The selectivity of an equality condition on an attribute with n distinct values
can be estimated by:

Assuming that the records are evenly distributed across the n distinct values,
a total of |r(R)|/n records would satisfy an equality condition on this attribute.

)R(r
1

n
1

)R(r
n

)R(r

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

COP 4710: Database Systems (Query Processing) Page 21 Mark Llewellyn ©

Algorithms for Conjunctive Selections (cont.)

• (IS7-conjunctive selection): If an attribute is involved in any single
simple condition in the conjunctive selection has an access path that
permits the use of any of FS2 through IS6, use that condition to retrieve
the records, then check if each retrieved record satisfies the remaining
simple conditions in the conjunctive condition.

• (IS8-conjunctive selection using a composite index): If two or more
attributes are involved in an equality condition and a composite index (or
hash structure) exists for the combined fields – use the composite index
directly.

• (IS9-conjunctive selection by intersection of record pointers): If
secondary indices are available on any or all of the attributes involved in
an equality comparison (assuming that the indices use record pointer and
not block pointers), then each index is used to retrieve the record pointers
that satisfy the individual simple conditions. The intersection of these
record pointers is the set of tuples that satisfy the conjunction.

COP 4710: Database Systems (Query Processing) Page 22 Mark Llewellyn ©

Algorithms for Join Operations

• The join operation and its variants are the most time
consuming operations in query processing.

• Most joins are either natural joins or equi-joins.

• Joins which involve two relations are called two-way joins
while joins involving more that two relations are called
multiway joins.

• While there are several different strategies that can be
employed to process two-way joins, the number of potential
strategies grows very rapidly for multiway joins.

COP 4710: Database Systems (Query Processing) Page 23 Mark Llewellyn ©

Two-way Join Strategies

• We’ll assume that the relations to be joined are named R and
S, where R contains an attribute named A and S contains an
attribute named B which are join compatible.

• For the time-being, we’ll consider only natural or equijoin
strategies involving these two attributes.

• Note that for a natural join to occur on attributes A and B, a
renaming operation on one or both of the attributes must
occur prior to the natural join operation.

– Note too, that if attributes A and B are the only join compatible
attributes in R and S, that the equi-join operation R *A=B S has the
same effect as a natural join operation.

COP 4710: Database Systems (Query Processing) Page 24 Mark Llewellyn ©

Algorithms for Two-way Join Operations
• (J1-nested loop): A brute force technique where for each record t∈R (outer

loop) retrieve every record s∈S (inner loop) and test if the two records satisfy
the join condition, namely does t.A = s.B?

• (J2-single loop w/access structure): If an index or hash key exists for one of
the two join attribute, for example, B∈S, retrieve each record t∈R one at a
time and then use the access structure to retrieve directly all matching records
s∈S that satisfy t.A = s.B.

• (J3-sort-merge join): If the records of both R and S are physically sorted
(ordered) by the values of the join attributes A and B, then the join can be
processed using the most efficient strategy. Both relations are scanned in the
order of the join attributes; matching the records that have the same A and B
values. In this fashion, each relation is scanned only once.

• (J4-hash-join): In this technique, the records of both relations R and S are
hashed using the same hashing function (on the join attributes) to the same
hash file. A single pass through the smaller relation will hash its records to
the hash file. A single pass through the other relation will hash its records to
the same bucket as the first pass combining all similar records.

COP 4710: Database Systems (Query Processing) Page 25 Mark Llewellyn ©

Pipelining Operations

• Query optimization can also be effected by reducing the number of
intermediate relations that are produced as a result of executing a
query stream.

• This reduction in the number of intermediate relations is
accomplished by combining several relational operations into a single
pipeline of operations. This method is also sometimes referred to as
stream-based processing.

• While the combining of operations in a pipeline eliminates some of
the cost of reading and writing intermediate relations, it does not
eliminate all reading and writing costs associated with the operations
nor does it eliminate any processing.

• As an example, consider the natural join of two relations R and S,
followed by the projection of a set of attributes from the join result.

COP 4710: Database Systems (Query Processing) Page 26 Mark Llewellyn ©

Pipelining Operations (cont.)

• In relational algebra this query looks like: π(a, b, c)(R * S)

• This set of two operations could be executed as:

– construct the join of R and S, save as intermediate table T1. [T1 = R * S]

– project the desired set of attributed from table T1. [result = π(a, b, c)(T1)]

• In the pipelined execution of this query, no intermediate relation T1 is
produced. Instead, as soon as a tuple in the join of R and S is
produced it is immediately passed to the projection operation to
processing. The final result is created directly.

• In the pipelined version, results are being produced even before the
entire join has been processed.

COP 4710: Database Systems (Query Processing) Page 27 Mark Llewellyn ©

Pipelining Operations (cont.)

• There are two basic strategies that can be used to pipeline operations.

• Demand-driven pipelining: In effect, data is “pulled-up” the query
tree as operations request data to operate upon.

• Producer-driven pipelining: In effect, data is “pushed-up” the query
tree as lower level operations produce data which is set to operations
higher in the query tree.

COP 4710: Database Systems (Query Processing) Page 28 Mark Llewellyn ©

Demand-Driven Pipelining Example

πs#

*

πp#

σcolor = red

P

SPJ

Selection extracts tuple from P, if match
tuple is set up the tree, if not, it is ignored

Projection requests tuple from selection

Join requests tuple from projection (below)
and a tuple from SPJ

Projection requests data from join operation

COP 4710: Database Systems (Query Processing) Page 29 Mark Llewellyn ©

Producer-Driven Pipelining Example

πs#

*

πp#

σcolor = red

P

SPJ

As soon as first tuple is produced
here is is sent to projection

As soon as first tuple is produced
here is is sent to join

As soon as first tuple is produced
here is is sent to projection

As soon as first tuple arrives here from
join a result is produced

COP 4710: Database Systems (Query Processing) Page 30 Mark Llewellyn ©

Using Heuristics in Query Optimization

• The parser of the high-level query language generates the internal
representation of the query which is optimized according to heuristic
rules.

• The access routines which execute groups of operations together are
based upon the access paths available for the relations involved are
chosen by the query optimizer.

• One of the main heuristic rules is to apply projections and selections
as early as possible. This is useful because the size of the relations
involved in subsequent join operations (or other binary operations)
are as small as possible.

• Basically, the query optimizer generates several different query
expressions and selects the best choice.

COP 4710: Database Systems (Query Processing) Page 31 Mark Llewellyn ©

Using Heuristics in Query Optimization (cont.)

• When an equivalent query expression is generated, you must be
certain that it is in fact an equivalent expression.

• To this end, the query optimizer must follow certain transformation
rules that will ensure equivalency amongst the various query
expressions.

• The level of information available to the optimizer will affect the
effectiveness of the equivalence generation scheme.

– At the lowest level – only relation names are known:

• R ∩ R ≡ R

• πX (R ∪ S) ≡ πX (R) ∪ πX (S)

• σA=B AND B=C AND A=C (R) ≡ σA=B AND B=C (R)

COP 4710: Database Systems (Query Processing) Page 32 Mark Llewellyn ©

Using Heuristics in Query Optimization (cont.)

– If schema information is available:

• Given R(A, B), S(B,C) with r(R) and s(S) then,

• σA=a (R * S) ≡ σA=a(R) * S

– If constraint information is known, they provide even more information
and modification possibilities:

• If you know that R(A,B,C,D) with r(R) and you also know that r satisfies
B→C, then πA,B (r) * πB,C (r) ≡ πA,B,C (r)

• In general, there are many different equivalences that will hold and
the optimizer can utilize as many as possible.

– For example: r ∪ r ≡ r, r ∩ r ≡ r, r − r ≡ ∅

COP 4710: Database Systems (Query Processing) Page 33 Mark Llewellyn ©

Using Heuristics in Query Optimization (cont.)

• Commutivity rules can also be applied to optimize query execution.

• For example what is the difference between R * S and S * R?

– Suppose that R contains 3 tuples and S contains 5 tuples. Further
suppose that each tuple in R is 10 bytes long and each tuple in S is 100
bytes long.

– R * S: 1 pass through R generates 3 × 10 bytes = 30 bytes. Three passes
through S (one for each tuple generated from R) generates 15 tuples ×
100 bytes = 1500 bytes. Total = 1530 bytes.

– S * R: 1 pass through S generates 5 × 100 bytes = 500 bytes. Five passes
through R (one for each tuple generated from S) generates 15 tuples × 10
bytes = 150 bytes. Total = 650 bytes.

– Clearly, S*R is a better strategy than is R*S.

COP 4710: Database Systems (Query Processing) Page 34 Mark Llewellyn ©

Using Cost Estimation in Query Optimization
• Cost estimation is typically only used for “canned” query execution code, i.e.,

compiled queries that will be executed repeatedly.

• The time and effort required for this type of analysis is not justified for
simple one-time query execution.

• The cost estimation technique considers the cost of executing a query from
four different perspectives:

1. Access costs to secondary storage: this involves all the costs of searching,
reading, and writing secondary storage.

2. Storage costs: this involves the cost of storing the intermediate files generated by
the chosen execution strategy.

3. Computation costs: Sorting, merging, computation in attributes (selection and join
conditions).

4. Communication costs: In a distributed environment, this includes the cost of
shipping the query and/or its results to the originating site.

COP 4710: Database Systems (Query Processing) Page 35 Mark Llewellyn ©

Semantic Query Optimization

• This technique uses the semantics of the database and the various
constraints that apply to semantically modify queries into queries
which are more efficient.

• For example, suppose a user issues the following query:

– πs# (σqty > 100 (SPJ)) {list supplier numbers for suppliers who ship at least
one part in a quantity greater than 100.}

– If a constraint exists that states: all quantities <= 75, then the optimizer
could inform the system that the query did not need to be executed at all
and the result is simply the empty set.

